Celigo evaluates a plant extract for glioblastomoa multiforme treatment

At the Canary Center at Stanford for Early Cancer Detection, investigators studied how AshwaMAX (a steroidal lactone from a winter cherry plant, Withania somnifera, extract) might work as an oral treatment for those with the highly aggressive cancer glioblastoma multiforme (GBM). A heterogeneous disease, non-specific therapies for GBM have proven largely ineffective. Two patient-derived GBM lines (GBM2, GBM39) and one GBM cell line were cultured to create neurospheres that were then exposed to various concentrations of AshwaMAX.  Celigo measured cell proliferation and cell death via Trypan Blue staining. AshwaMAX inhibited the neurospheres at nanomolar concentrations. After additional work in vivo, [...]

Ignyta tests Celigo against Cell Titer-Glo for cell proliferation

Here's a great example of how the Celigo image cytometer is able to perform common experiments while saving time and money! Ignyta, Inc. was looking for a new way to perform reagent-free proliferation analyses with suspension cells. This new method had to produce results which correlated well to their current method, Cell Titer-Glo®. Nexcelom and Ignyta partnered to perform a head-to-head cell proliferation comparison between Celigo® and Cell Titer-Glo. Using four suspension cell types (Ba/F3 parental cell line, Ba/F3 expressing an oncogenic gene, oncogenic gene mutant A and B), Ignyta plated all cells at a concentration of 5,000 cells/well in [...]

By | 2015-10-23T13:37:41+00:00 October 23rd, 2015|Categories: Celigo User Publications|Tags: , , |0 Comments

A Rapid and Label-Free In Situ Assay Method for Cell Proliferation and Drug Toxicity using Celigo Imaging Cytometer

It's White Paper Wednesday! Read our featured white paper: A Rapid and Label-Free In Situ Assay Method for Cell Proliferation and Drug Toxicity using Celigo Imaging Cytometer In this study, Celigo was used to screen a compound library for effects on cell proliferation in adherent and non-adherent cell lines. Human lung carcinoma (A549) and promyelocytic leukemia (HL-60) cells were treated with a panel of compounds to inhibit proliferation. Finally, the Celigo system used image-based analysis to measure changes in cell morphology upon compound treatment. These data indicate that certain anti-proliferative compounds can have secondary effects on cell health or physiology, [...]

By | 2015-08-05T10:30:08+00:00 August 5th, 2015|Categories: Celigo Application News|Tags: , , , |0 Comments

Time-Course Monitoring of Primary Murine B1 and B2 Cell Proliferation using Cellometer Vision Image Cytometer

It's White Paper Wednesday! Read our featured white paper: Time-Course Monitoring of Primary Murine B1 and B2 Cell Proliferation using Cellometer Vision Image Cytometer Cell proliferation is an important assay for pharmaceutical and biomedical research to test the effects of a variety of treatments on cultured primary cells or cell lines [1, 2]. Previously, we have reported a rapid and accurate fluorescence-based cell population analysis method using a novel image-based cytometry system. The method is highly comparable to traditional flow cytometry using fewer cells [3-6]. Here we report the development of a novel method for the kinetic measurement of cell [...]

By | 2018-06-20T20:32:04+00:00 July 22nd, 2015|Categories: Cellometer Application News|Tags: , , , , |0 Comments